Jumat, 21 September 2012



NILAI EIGEN DAN VEKTOR EIGEN

Nilai eigen merupakan nilai karakteristik suatu matriks. Secara sederhana, nilai eigen merupakan nilai yang mempresentasikan suatu matriks dalam perkalian dengan suatu vektor, 
Untuk mencari nilai λ yang sesuai, terlebih dahulu dihitung determinan dari (A-λ) dengan metode Sarrus atau ekspansi kofaktor
polinomial yang didapatkan di atas disebut polinomial karakteristik. Jika dicari dengan pemfaktoran atau dengan bantuan Matlab, diperoleh -λ3+4λ2+4λ-16 = (λ+2)(-λ+2)(λ-4)
sehingga didapatkan ketiga nilai eigen yaitu λ = 2, λ = -2 dan λ = 4

          Cara spesial untuk memperoleh polinomial karakteristik matriks 2x2 dan 3x3 ialah:
☺ 2x2 -> det(A) - λ.trace(A) + λ2
☺ 3x3 -> det(A) - λ.(M11 + M22 + M33) + λ2.trace(A) - λ3


Vektor Eigen

 Vektor eigen(x) merupakan solusi dari matriks (A-λ) untuk setiap nilai λ yang ada di mana x≠ 0. Misalkan pada matriks A tadi mempunyai tiga nilai eigen, maka vektor eigennya juga ada tiga. Misalkan untuk λ = 2
 SPL di atas dapat diselesaikan dengan metode Gauss atau Gauss-Jordan. Metode Crammer tak dapat digunakan karena matriks di atas tidak memiliki solusi sejati (determinannya = 0). Jadi kita hanya dapat memperoleh solusi trivialnya dengan menyatakanab, dan c misalkan dalam c. Dengan metode Gauss, matriks segitiga atas yang diperoleh setelah melakukan operasi baris elementer (OBE) yaitu:

jika abc kita nyatakan dalam c, diperoleh
-0,4b - 0,4c = 0
-10a + 21b - 9c = 0
dari kedua persamaan di atas diperoleh b = -c dan a = -3c. Jadi vektor eigen untuk λ = 2 


Lampiran:
1. script Matlab untuk mencari polinomial karakteristik dan nilai eigen
% Polinomial Karakteristik dan Nilai Eigen
clc;
clear all;
A=input('Mariks A = ');
clc;
disp('Matriks A =');
disp(A);
dA=det(A);
[ba,ka]=size(A);
syms L;
for j=1:ka
for i=1:ba
C=A-L*eye(ba);
end
end
disp(C);
disp('polinomial karakteristik matriks A=');
disp(det(C));
disp('nilai eigen matriks A=');
disp(eig(A));

0 komentar: